Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 172: 108260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492457

RESUMEN

BACKGROUND & AIMS: CLSPN, a critical component of the S-phase checkpoint in response to DNA replication stress, has been implicated in the pathogenesis of multiple tumor types. The rising incidence of hepatocellular carcinoma (HCC) poses a significant challenge to global public health. Despite this, the specific functions of CLSPN in the development of HCC remain poorly understood. METHODS: We systematically evaluated the expression of CLSPN, prognosis and immune infiltration in patients with HCC and identified a competing endogenous RNA (ceRNA) network by using public database. The RT-qPCR, western blot, CCK8, transwell, flow cytometry, animal experiments, proteasome inhibition experiment, Co-IP assay and mass spectrometry were applied to explore its biological functions, post-transcriptional modifications and potential molecular mechanisms of CLSPN in HCC. RESULTS: We verified the expression of CLSPN, and its high expression is an independent prognostic factor in HCC. The expression of CLSPN is also associated with the immune microenvironment of HCC. CLSPN silencing inhibited the proliferation, migration, invasion and cell cycle progression of HCC cells. We established a PSMA3-AS1/hsa-miR-101-3p/CLSPN regulator axis in HCC. CLSPN was influenced by ubiquitination and was involved in the Wnt/ß-catenin pathway to regulate HCC progression. CONCLUSIONS: It was the first time to comprehensively discover and identify the expression, prognosis, immunotherapy, RNAs regulator, posttranscriptional modification, and molecular mechanisms of CLSPN in HCC. These novel insights have the potential to expedite the development of personalized treatment strategies and translational medicine approaches for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , Línea Celular Tumoral , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Apoptosis ; 29(5-6): 898-919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411862

RESUMEN

The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.


Asunto(s)
Arilsulfotransferasa , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Sulfotransferasas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/enzimología , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/enzimología , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Línea Celular Tumoral , Persona de Mediana Edad , Animales , Ratones , Proliferación Celular/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Resistencia a Antineoplásicos/genética
3.
J Transl Med ; 21(1): 665, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752518

RESUMEN

Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Apoptosis , Autofagia , Carcinogénesis , Proteasas Ubiquitina-Específicas , Microambiente Tumoral , Ubiquitina Tiolesterasa
4.
Front Endocrinol (Lausanne) ; 13: 1090324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605944

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer deaths worldwide, seriously affecting human community health and care. Emerging evidence has shown that aberrant glycosylation is associated with tumor progression and metastasis. However, the role of glycosylation-related genes in HCC has notbeen reported. Methods: Weighted gene coexpression network analysis and non-negative matrix factorization analysis were applied to identify functional modules and molecularm subtypes in HCC. The least absolute shrinkage and selection operator Cox regression was used to construct the glycosylation-related signature. The independent prognostic value of the risk model was confirmed and validated by systematic techniques, including principal component analysis, T-distributed random neighbor embedding analysis, Kaplan-Meier survival analysis, the ROC curve, multivariate Cox regression, the nomogram, and the calibration curve. The single-sample gene set enrichment analysis, gene set variation analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were evaluated by the immune microenvironment and potential biological processes. The quantitative real-time polymerase chain reaction and immunohistochemistry analysis were used to verify the expression of five genes. Results: We identified the glycosylation-related genes with bioinformatics analysis to construct and validate a five-gene signature for the prognosis of HCC patients. Patients with HCC in the high-risk group had a worse prognosis. The risk score could be an independent factor and was associated with clinical features, such as the grade and stage. The nomogram exhibited an accurate score that included the risk score and clinical parameters. The infiltration levels of antitumor cells were upregulated in the low-risk group, including B_cells, Mast_cells, neutrophils, NK_cells, and T_helper_cells. Moreover, glycosylation was more sensitive to immunotherapy, and may play a critical role in the metabolic processes of HCC, such as bile acid metabolism and fatty acid metabolism. In addition, the five-gene messenger RNA (mRNA) and protein expression were overexpressed in HCC cells and tissues. Conclusions: The glycosylation-related signature is effective for prognostic recognition, immune efficacy evaluation, and substance metabolism in HCC, providing a novel insight for therapeutic target prediction and clinical decision-making.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Glicosilación , Neoplasias Hepáticas/genética , Factores de Riesgo , Toma de Decisiones Clínicas , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...